
Temperature Dependent Viscosity Effect on 
Buoyancy-Surface Tension Driven Convection in 

a Rotating Ferrofluid Layer and Submitted to 
Robin Thermal Boundary Conditions 

Geetha B S, C. E. Nanjundappa 

 

Abstract— Combined effect of buoyancy and surface tension forces in a rotating ferrofluid layer heated from below is studied using linear 

stability analysis of the Navier-Stokes equations supplemented by Maxwell’s equations and the appropriate magnetic force subjected to 

temperature dependent viscosity. The lower boundary is considered to be rigid at constant temperature, while upper boundary free open to 

the atmosphere is flat and subject to a Robin-type of thermal boundary condition. The weighted residual Galerkin technique is employed to 

extract the critical stability parameters numerically. It is shown that convection sets in oscillatory motions provided that the Prandtl number 
( Pr ) is less than unity. A mechanism for suppressing or augmenting Bénard–Marangoni ferroconvection by Coriolis force (Ta ), 

temperature dependent viscosity ( ), Biot number ( Bi ), magnetic Rayleigh number (
mR ) and nonlinearity of fluid magnetization (

3M ) is 

discussed in detail. It is found that the onset of Bénard–Marangoni ferroconvection is delayed with an increase in  ,  Ta , Bi  but 

opposite is the case with an increase in 
3M , 

mR . Further, increase in 
3M  and decrease in  ,Ta  and Bi  is to decrease the size of the 

convection cells. A few results are known as recovered to special cases 

Index Terms— ferrofluid; heat transfer coefficient; rotation; surface-tension; temperature dependent viscosity; heat transfer coefficient; 

Galerkin technique; Convection cell. 

——————————   ◆   —————————— 

1 INTRODUCTION                                                                     

Ferrofluids (magnetic fluids) are commercially manufactured 
colloidal liquids usually formed by suspending mono–domain 
nano particles (their diameter is typically 10 nm) of magnetite 
in non–conducting liquids like heptanes, kerosene, water, etc. 
and they are also called magnetic nano fluids. The ferrofluid is 
a type of functional fluid whose flow and energy transport 
processes may be controlled by adjusting an external magnetic 
field, which makes it find a variety of applications in various 
fields such as electronic packing, mechanical engineering, aer-
ospace, bioengineering and thermal engineering. An authori-
tative introduction to this fascinating subject along with their 
applications is provided in Odenbach [1], Rosenwieg [2] and 
Shliomis [3].  

The magnetization of ferrofluids depends on the magnetic 
field, the temperature and the density of the fluid. Any varia-
tion of these quantities can induce a change in body force dis-
tribution in the fluid. This leads to convection in ferrofluids in 
the presence of magnetic field gradient, known as ferroconvec-
tion, which is also known as Bénard-ferroconvection Finlayson 
[4], Penfield [5], Rosenwieg [6], Sekhar [7]. Convective insta-

bility in a ferrofluid layer can also be induced by surface ten-
sion forces provided it is a function of temperature and/or 
concentration. In view of the fact that heat transfer is greatly 

enhanced due to convection, the ferroconvection problems 
offer new possibilities for new applications in cooling of mo-
tors, loud speakers, transmission lines, and other equipment 
where magnetic field is already present. If the ferrofluid layer 
has an upper surface open to atmosphere then the instability is 
due to the combined effects of buoyancy as well as tempera-
ture–dependent surface tension forces, known as Bénard –
Marangoni ferroconvection. A limited number of literatures 
have addressed this type of instability problem in a horizontal 
ferrofluid layer. Linear and nonlinear stability of combined 
buoyancy and surface-tension effects in a ferrofluid layer 
heated from below has been analyzed by Qin and Kaloni [8]. 
The Bénard–Marangoni convection problems of ferrofluid lay-
er heated from below under various assumptions is studied by 
many authors Odenbach [9], Hennenberg et al. [10], [11], [12], 
Idris and Hashim [13], Nanjundappa et al.  [14], [15], [16], [17], 
Shivakumara et al.  [18]. The effect of viscosity variations on 
the onset of Bénard –Marangoni ferroconvection in a horizon-
tal layer of ferrofluid was investigated by Nanjundappa et al. 
[19], [20]. Recently, Sekhar et al. [21] have studied the effect of 
variable viscosity on thermal convection in Newtonian ferro-
magnetic liquid by considering different forms of boundary 
conditions.  

The study of fluids in rotation is itself an interesting topic 
for research. Ferrofluids are known to exhibit peculiar charac-
teristics when they are set to rotation. Gupta and Gupta [22] 
have studied the convective instability in a rotating layer of 
ferrofluids between two free boundaries. The effect of rotation 
on thermo–convective instability of a horizontal layer of fer-
rofluid confined between stress–free, rigid–paramagnetic and 
rigid–ferromagnetic boundaries was discussed by Venka-
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tasubramanian and Kaloni [23]. Thermal convection in a rotat-
ing layer of a magnetic fluid is discussed by Auernham-
merand Brand [24]. Vaidyanathan and Sekar [25] have studied 
linear stability analysis for the effect of MFD viscosity on the 
onset of ferroconvection in rotating medium. The weakly non-
linear instability of a rotating ferromagnetic fluid layer heated 
from below is studied by Kaloni and Lou [26]. 

Shivakumara and Nanjundappa [27] have studied the ef-
fects of Coriolis force and different basic temperature gradi-
ents on Marangoni ferroconvection. Prakash and Gupta [28] 
have proved analytically that the complex growth rate of an 
arbitrary oscillatory motion of growing amplitude in ferro-
convection rotating ferrofluid layer with MFD viscosity. 
Nanjundappa et al. [29] have studied the combined effect of 
rotation and magnetic field dependent viscosity on Bénard-
Marangoni convection in a ferrofluid layer.  

In view of the fact that rotation gives rise to interesting 
practical situations, the object of this paper is to study the 
combined effect of rotation and surface tension force on the 
linear stability of Bénard–Marangoni ferroconvection. In this 
study, the lower rigid boundary is considered to be isothermal 
and the upper non–deformable free boundary is insulating to 
temperature perturbations. The resulting eigenvalue problem 
is solved numerically by employing the Galerkin technique. A 
comparative study is conducted to analyze on the onset of 
convection and also with the other works under the limiting 
conditions 

2 MATHEMATICAL FORMULATION 

We consider an incompressible ferromagnetic fluid bounded 
by two nonmagnetic horizontal plates at 0 z d   in presence 
of vertical magnetic field 

0H H k=   and is perpendicular to the 
boundary. The lower and the upper boundaries are main-
tained at constant but different temperatures 0T and 1 0( )T T

 
respectively. The layer is rotating uniformly about its vertical 
axis with angular velocity k̂= , which is bounded below 
by a rigid–isothermal surface and above by a non–deformable 
free–insulating surface with thermally constrained by a Robin 
boundary condition.  

The stream of Benard-Marangoni convection for thermoca-
pillary forces, buoyancy forces and viscous forces is due to the 
linearly temperature dependent surface tension ( ) and vis-
cosity ( ), respectively. The following relations are consid-
ered: 

0 0[1 ( )]T T T  = − −
                           

(1) 

0 0[1 ( )]T T  = − −                   
(2) 

where
0

/( )T TT T ==   the rate of change of surface tension 
with temperature and 0  the unperturbed value surface ten-
sion with temperature, 0  and   are positive constants. For 
an incompressible, ferromagnetic fluid in the presence of uni-
form magnetic field, the basic equations solved our simulation 
the Navier-Stokes equations for fluid flow, including the vis-
cous force [  ( ( ) )]T

v V VF =   +  , magnetic force 

0( )m M HF =   and Coriolis force acceleration 
0

2 (V )CF =   . 
The complete sets of equations are 

0V =                     (3) 

0
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0
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(5) 

 

( ) 0M H + = , 0H =  or H =                    
(6) 

0 0[ / )( ) ( )](M H HM H H K T T= + − − −                 
(7) 

 
where, ( , , )V u v w=  is the fluid velocity, t  the time, g the 

acceleration of gravity, the coefficient 7 1
0 4 10 Henrym  − −=   

the magnetic constant, ,V HC  the specific heat capacity at con-

stant volume and magnetic field, tk  the thermal conductivi-

ty, 2 2 2 2 2 2 2/ / /x y z =   +   +    the Laplacian operator, 

H H=  and M M= . The centrifugal force can be combined 

with static pressure p and its defined by modified fluid pres-
sure term:    

2 2 2 2 1/2 2 2(1 )( - ) 2 - ( - ) (- - )t mz D a D D a Ta D a aW R R D    + +
 

= +                (8) 

2 2
2(D )Pr  (1 )a M W− − = − −                  

(9) 

2 2
3(D ) 0a M D−  −  =                  (10)

 
2 2(1 )( )z D a D Ta DW    + − + − = −

                 
(11) 

Here, gravity thermal Rayleigh number 4( / )t tR g d   = , 
magnetic number ( 2

1 0 0/ (1 ) tM K g    = + ), magnetic ther-
mal Rayleigh number ( 2 2 4

0 / (1 )mR K d    = + ), non–
linearity of fluid magnetization parameter                                               
( )1/()/1( 003 χHMM ++= , Taylor number                                                      
( 242 /4 dTa = ), non–dimensional magnetic parameter                  
( )1(/ 00

2
002  += CKTM , Prandtl number ( κν /Pr = ) and 

temperature dependent viscosity  . The typical value of 2M  
for ferrofluids with different carrier liquids turns out to be of 
the order of 610 1−   and hence neglect the terms involving 2M  
in (9).  

The corresponding boundary conditions for the perturbed 
non–dimensional variables take the form  

0W DW = =  =  = =                                    at  0z =          (12) 

2 2(1 ) 0aW D W M a D D Bi D == + +  =  = +  =        at  1z =           (13) 

where, /
T

M T da  =   is the Marangoni number and 

tk/dhBi = is the Biot number. The case 0Bi =  and Bi →   

respectively correspond to constant heat flux and isothermal 
conditions at the upper boundary with respect to the per-
turbed temperature. 

3 METHOD OF SOLUTION 

Equations (8)–(11) together with boundary conditions (12) and 
(13) constitute an eigenvalue problem with thermal Rayleigh 
number

tR or Marangoni number Ma  as an eigenvalue. To 

solve the resulting eigenvalue problem, weighted residual 
Galerkin method is used. Accordingly, the variables are writ-
ten in a series of basis functions as 
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The eigenvalues have to be extracted from the above charac-
teristic equation. For this, we select the trial functions as 

3 2 1 1

2 2 1

5 3
, 2 ,

2 2

( 11 /6 2/3) , ( 1) ,

i i i i i
i i

i i
i i

W z z z z z

z z z z z

+ + + +

+

= − +  = −

 = − + = −
                             

(15) 

these trial functions satisfy all the corresponding boundary 
conditions except the one, namely  

2 2 0D W Ma a D Bi+  = =  +   at 1z =
 
but the residual from 

this equation is included as a residual from the differential 
equation. At this juncture, it would be instructive to look at 

the results for 1== ji and for this order (14) gives the fol-

lowing characteristic equation 
2

5

3 4
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To examine the stability of the system, we take i =  in 
(16) and clear the complex quantities, we obtain,  

22
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Since Ma  is a physical quantity it must be real, so that it im-

plies either 0 =  or 0 =  (i.e. 0  ) and accordingly the 

condition for steady and oscillatory onset is obtained.  
The steady onset is governed by 0 =  and it occurs at 

,sMa Ma=  where  

1
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(18) 

The oscillatory convection occurs at 0 ,Ma Ma=  where 
2 2

1 4 2 4 3
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Here, 2
1 1 2 29( 4 ) /32,a Pr  = −
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The corresponding frequency of oscillations is given 
by  

2
2 2 1

4 2

36 1 2

4 1 2

Ta Pr

Pr

 


 

 −
= − +  

+ 
                

(20)  

For the occurrence of oscillatory onset, 2 should be positive 
and the necessary conditions for the same are 

2

2

(2 4 3.75 )

(2 )( 12)

a Bi
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+ +


+ +
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2
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where, 
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From the relation (21), the value of 1Pr   for irrespective 
rate of , ,a Bi  and thus it is evident that for the oscillatory 
onset to exist in the classical viscous liquids. However, the 
ferrofluids, whether it is water based or any other organic liq-
uid based, Prandtl number is greater than unity and hence the 
overstability is not a preferred mode of instability. In what 
follows we restrict ourselves to the case of steady onset and 
put 0 = in (17). A nontrivial solution to the system requires 
the characteristic determinant of the coefficient matrix must 
vanish and this leads to a relation     

, 3( , , , , , , ) 0t mf R R Ma M Bi Ta a =
                           

(22) 

4 RESULTS AND DISCUSSION 

 

 
 
 

TABLE 1 
COMPARISION OF CRIOTICAL VALUES OF tcR AND mcR  FOR DIF-

FERENT VALUES OF Ma AND Bi WHEN 0, = 3 1,M =   AND 
410S −=   

 

 

Bi

 

 

Ma  

Present Analysis Qin and Kaloni [8] 

tcR  mcR
 tcR  mcR  

 

 

 

 

 

0 

0 637.875 40.688 652.87 42.624 

30 416.358 17.335 414.72 17.199 

50 256.414 6.575 254.06 6.455 

60 172.539 2.977 171.44 2.939 

70 85.9213 0.738 85.67 0.734 

79.61 0.000 0.000 0.000 0.000 

 

 

 

 

 

 

10 

0 

 
934.009 87.237 892.06 79.577 

100 748.641 56.046 721.01 51.981 

200 540.996 29.268 526.21 27.690 

300 306.831 9.414 301.89 9.114 

350 177.771 3.160 176.10 3.101 

413.44 0.000 0.000 0.000 0.000 
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The linear stability theory is used to investigate the effects of 
rotation and temperature dependent viscosity on coupled Bé-
nard–Marangoni ferroconvection in a horizontal ferrofluid 
layer. The lower boundary is taken to be rigid–isothermal, 
while the upper free boundary open to the atmosphere is flat 
and subject to a convective surface boundary condition. The 
resulting eigenvalue problem is solved by employing Galerkin 
weighted residual method with either thermal Rayleigh num-
ber (

tR ) or Marangoni number ( Ma ) as the eigenvalue. Com-
putations reveal that the convergence in finding critical Ma-
rangoni number cMa crucially depends on the value of Taylor 
number Ta . For higher value of Ta  more number of terms in 
the expansion of dependent variables were found to be re-
quired. The results presented here are for i = j = 8 the order at 
which the convergence is achieved, in general.  
 

In order to compare the results of the present analysis with 
those of Qin and Kaloni [8] obtained numerically, a new mag-
netic parameter 2 2 2 4

0 0/ (1 ) )( tK v g dS     += which was intro-
duced in the analysis. The critical values obtained for different 
values of cMa with values of magnetic parame-
ter 4 )( 10S −= and Biot number 0,( 10)Bi = are exhibited in Ta-
ble 1. In order to validate the numerical solution procedure 
used, first the critical values ( , )c cMa a obtained from the pre-
sent study under the limiting conditions are compared with 
the previously published results of Vidal and Acrivos [30] in 
Table 2. The results tabulated in Table 2 for different values of 
Ta  are for 0t mBi R R = = = =

 
(i.e., classical Marangoni convec-

TABLE 2 
COMPARISON OF cMa  AND ca FOR DIFFERENT VALUES OF 

Ta  WHEN 0mR = AND 0tR =   

Ta  

Vidal and Acrivos         
[30] 

  cMa               ca      

     Present study 
    cMa            ca      

0    80                 2.0   79.61            1.99 

102    92                 2.2   91.31            2.17 

103    164               3.0   163.11          2.97 

104    457               5.0   456.21          4.99 

105    1400             8.6   1400.45        8.82 

 

TABLE 3 
CRITICAL INSTABILITY PARAMETERS  tcR  AND mcR FOR DIFFERENT VALUES OF Ma

 
AND  Ta

 
WHEN 0.2 =

 
AND 2Bi =  

 

 

 

Ta  

 

 

cMa  

 

0mR =  

 

0tR =  

3 1M =  3 15M =  3 25M =  3M →  

tcR  ca  mcR  ca  mcR  ca  mcR  ca  mcR  ca  

0 

0 

50 

100 

150 

170.768 

912.042 

669.466 

407.267 

124.202 

0.00 

 

2.380 

2.342 

2.330 

2.346 

2.361 

1159.552 

844.092 

504.740 

153.582 

0.00 

 

 

 

 

 

 

2.441 

2.381 

2.351 

2.352 

2.361 

964.544 

708.598 

431.087 

131.350 

0.00 

 

2.456 

2.397 

2.363 

2.356 

2.361 

946.102 

694.861 

422.713 

128.827 

0.00 

2.434 

2.381 

2.353 

2.353 

2.361 

912.042 

669.466 

407.267 

124.202 

0.00 

2.380 

2.342 

2.330 

2.346 

2.361 

102 

0 

50 

100 

150 

185.837 

 

1000.772 

761.108 

500.548 

217.706 

0.00 

2.524 

2.484 

2.468 

2.479 

2.504 

1266.806 

955.918 

623.125 

268.399 

0.00 

 

2.594 

2.530 

2.495 

2.489 

2.504 

1053.486 

801.707 

527.252 

229.152 

0.00 

2.594 

2.537 

2.503 

2.493 

2.504 

1034.73

8 

787.276 

517.748 

225.066 

 

2.573 

2.521 

2.462 

2.489 

2.504 

 

1000.772 

761.108 

500.548 

217.706 

0.00 

2.524 

2.484 

2.468 

2.479 

2.504 

 

103 

0 

50 

100 

150 

200 

250 

279.582 

 

 

 

1595.941 

1374.820 

1129.050 

856.251 

553.491 

216.951 

0.00 

3.233 

3.193 

3.166 

3.156 

3.166 

3.199 

3.230 

1969.083 

1686.784 

1376.392 

1036.370 

664.700 

258.385 

0.00 

3.339 

3.277 

3.228 

3.199 

3.190 

3.207 

3.230 

1652.752 

1423.718 

1168.990 

886.195 

572.488 

224.201 

0.00 

 

3.284 

3.238 

3.203 

3.183 

3.183 

3.205 

3.230 

 

 

 

1631.74

2 

1405.63

0 

1154.20

7 

875.100 

 

3.267 

3.223 

3.191 

3.174 

3.177 

3.203 

3.230 

1595.941 

1374.820 

1129.050 

856.251 

553.491 

216.951 

0.00 

 

3.233 

3.193 

3.166 

3.156 

3.166 

3.199 

3.230 
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tion for non–ferrofluids). From the values presented in Tables 
1 and 2, it is evident that there is an excellent agreement be-
tween the results of the present study and the previously pub-
lished ones. This verifies the applicability and accuracy of the 
method used in solving the convective instability problem 
considered. 

The tight coupling between buoyancy, surface tension, 
magnetic and Coriolis forces is exhibited quantitatively by 
tabulating the values of triplets (

tcR , cMa ,
mcR ) for different val-

ues of Ta  with 0.2 =
 
and 2Bi =  in Table 3. From the table, it 

can be seen that an increase in non–linearity of the fluid mag-
netization 3M  

is to decrease mcR  
but only marginally and 

thus it has a destabilizing effect on the stability of the system. 
This may be due to the fact that the application of magnetic 
field makes the ferrofluid to acquire larger magnetization 
which in turn interacts with the imposed magnetic field and 
releases more energy to drive the flow faster. Hence, the sys-
tem becomes unstable with a smaller temperature gradient as 
the value of 3M  

increases. From the Table 3, we note that an 
increase in 3M  

is to increase ca and hence its effect is to de-
crease the dimension of convection cells. Besides, as 3M  

in-
creases, mcR

 
decreases and the results reduce to that of classi-

cal Bénard–Marangoni problem for ordinary viscous fluids as 

3M → . That is, mc tcR R=  
as 3M → . 

 
 
 
 
 
 
 
 
In Figures 1-3, three solid curves correspond to lower  
 
 
 
 
 
 
 
 
 
 
 
 
It is instructive to know the process of convergence of re-

sult as the number of terms in the Galerkin approximation 
increases for the problem considered. Hence, the various lev-
els of approximation to cMa  and the corresponding ca are also 
obtain for variation of Ta  when classical Marangoni convec-
tion and results are shown graphically in Fig.1. It is seen that 
with an increase in the number of terms in Galerkin approxi-
mations, cMa

 
goes on increasing and finally for the order 

8i j= = the present results converge compare well with re-
sults of previous study by Pradhan [31] and these results are 
obtained by Fourier series method. This clearly shows the ac-
curacy of the numerical procedure employed in solving the 
problem. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figs. 2-4 are analogous to two types of ferroconvection, 

three solid curves corresponding to ferroconvection in the ab-
sence of surface tension force (i.e., Benard-
ferroconvection, 0Ma = ) and three dotted curves correspond-
ing to ferroconvection in the absence of buoyancy force (i.e., 
Marnagoni-ferroconvection, 0tR = ). The plot of tcR  

and cMa  
against η

 
for various values of Ta  for 3 1M = , 100mR =  and 

2Bi =  with two types of ferroconvection. It shows that they 
are bridging the space between the Benard-ferroconvection 
and Marangoni-ferroconvection by increasing in Ta . Clearly, 
the results of Marangoni-ferroconvection advances the ferro-
convection compared to Benard-ferroconvection. Fig. 2 reveals 
that the linear stability analysis can be expressed in terms of  

tcR  
and cMa , the system with tcR  

eigenvalue is unstable 
compared to cMa  eigenvalue, it is noted that .c tcMa R Be-
sides, it can be observed that an increasing η , the critical sta-
bility parameters ( tcR and cMa ) increases and thus it has a 
stabilizing effect on the system. That is, the effect of increasing 

η   
is to delay the onset of ferroconvectionfor both the cases. 

This is the good agreement of the result found by Stengel et al. 
[32] and White and Perroux [33]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Fig. 3, we note that increase in η  

is to decrease the 
critical wave number ca and thus to widen the size of convec-
tion cells and opposite is the case with increasing Ta . 
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Fig. 1.Variation of cMa as a function of Ta  for different orders by 
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Fig. 2. Variations of cMa and tcR  as a function of η  for differ-
ent values of Ta  when 3 1M = , 100mR =  and 0Bi =   
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Fig. 3. Variations of ca as a function of η  for different values 

of Ta  when 3 1M = , 100mR =  and 2Bi =  
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Fig. 4 shows that tcR  

and cMa  
as a function of η  

for differ-
ent values of heat transfer coefficient Bi (i.e., Biot number) 
with other parameters fixed ( 3 1M = , 100mR =  and 100Ta = ). 
From the figure it is evident that an increase in Bi  is to in-
crease tcR  

as well as cMa . Thus, it is observed effect of Bi  
seen in Fig. 4 may be attributed to the fact that with increasing 
Bi , the thermal disturbances can easily dissipate into the am-

bient surrounding due to a better convective heat transfer co-
efficient at the upper surface and hence higher heating is re-
quired to make the system unstable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 The variation of critical wave number ca as a function of η  

is shown in Fig. 5 for different values of Bi  with two types of 
ferroconvection. From the figure it is seen that the critical 
wave number ca  increases as the values of Biot number Bi  
increase and hence its effect is to contract the convection cell 
size. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figs. 6, 7 & 8 show the locus of the critical Marangoni num-

ber cMa and the critical magnetic Rayleigh number mcR for 
different Bi , Ta  and 3M . Besides, from these figures, it is ob-
vious that the curves are slightly convex and there is a strong 
coupling between cMa  

and mcR  and an increase in magnetic 
Rayleigh number has a destabilizing effect on the system. 
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 Fig. 5. Variations of ca  as a function of η  for different val-

ues of Bi  when 3 1M = , 100mR =  and 100Ta =  
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Fig. 6. Locus of cMa  and mcR  for different values of Bi  when 
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Fig. 8. Locus of cMa  and mcR  for different values of 3M  
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Thus, when the magnetic force is predominant, the surface 
tension force becomes negligible and vice–versa. From the 
figures, the extent to which the surface tension effect is dimin-
ished due to magnetic force however, depends on the Biot 
number, Bi , temperature dependent viscosity, η , non-linearity 
of the fluid magnetization, 3M , and strength of rotation, Ta . 
The critical magnetic Rayleigh number tcR  

and Marangoni 
number cMa  

increase with an increase in Bi , Ta , η  
and de-

crease in 3M  
thus the system is destabilizes.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The variations of tcR  

and cMa  
as a function of η  

is shown 
in Fig. 9 for various values of mR with two types of ferrocon-
vection for 3 1M = , 2Bi =  and 100Ta = . The amount of mR is re-
lated to the importance of magnetic forces as compared to 
buoyancy forces. The case 0mR =  

corresponds to convective 
instability in an ordinary viscous fluid layer. From the figure, 
it is seen that an increase in mR

 
leads to decrease the values of 

tcR
 
and cMa  

suggesting that the ferrofluids carry heat more 
efficiently than the ordinary viscous fluids. This is due to an 
increase in the destabilizing magnetic force with increasing 

mR , which favors the fluid to flow more easily. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 illustrates that increase in the value of mR is to de-

crease the critical wave number ca slightly and thus to in-
crease the size of convection cells. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11 is the plot of cMa and tcR versus η  

for different val-
ues of non-linearity of the fluid magnetization 3M . It is quite 
explicit that the effect of the departure from linearity in the 
magnetic equation of state, reflected by increasing in 3M , is to 
destabilize the system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 represents the corresponding critical wave number 

ca
 
and it indicates that increase in 3M

 
is to increase ca

 
and 

thus their effect is to reduce the size of convection cells.  

5   CONCLUSIONS 

The combined effect of buoyancy and surface tension forces in 
a rotating ferrofluid layer heated from below subjected to 
temperature dependent viscosity is investigated theoretically. 
The lower boundary is taken to be rigid with fixed tempera-
ture, while the upper free boundary at which temperature–
dependent surface tension effect is considered is non–
deformable and subject to a general thermal condition. The 
Rayleigh–Ritz’s method is employed to extract the critical sta-
bility parameters numerically with thermal Rayleigh number 

tR
 
or magnetic Rayleigh number mR or Marangoni number 

Ma  as the eigenvalue. The critical stability parameters tcR , 

mcR  
and cMa  

increases with an increase in Taylor number 
Ta  , Biot number Bi  and MFD viscosity parameter η  

thus 
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Fig. 9. Variations of cMa  and tcR  as a function of η  for differ-
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their effect is to delay the onset of Bénard–Marangoni convec-
tion in a rotating ferrofluid layer. The effect of increasing the 
magnetic force mR  

and the non–linearity of fluid magnetiza-
tion 3M  

is to suppress the onset of ferroconvection. The buoy-
ancy force and surface tension force complement with each 
other and it is always found that ( or )c tc mcMa R R , a result in 
accordance with ordinary viscous fluids. As 3M → , the re-
sults reduce to that of the Bénard–Marangoni problem for or-
dinary viscous fluids. The effect of increase in Ta  and  Bi  as 
well as decrease in 3M  

and mR  
is to increase the critical wave 

number ca
 
and hence their effect is to decrease the dimension 

of convection cells. 
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